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We report on investigations on the consequences of the quasiclassical Langevin 
equation. This Langevin equation is an equation of motion of the classical type 
where, however, the stochastic Langevin force is correlated according to the 
quantum form of the dissipation-fluctuation theorem such that ultimately its 
power spectrum increases linearly with frequency. Most extensively, we have 
studied the decay of a metastable state driven by a stochastic force. For a 
particular type of potential well (piecewise parabolic), we have derived explicit 
expressions for the decay rate for an arbitrary power spectrum of the stochastic 
force. We have found that the quasiclassical Langevin equation leads to decay 
rates which are physically meaningful only within a very restricted range. We 
have also studied the influence of quantum fluctuations on a predominantly 
deterministic motion and we have found that there the predictions of the 
quasiclassical Langevin equations are correct. 

KEY WORDS: Decay of metastable states; colored noise; stochastic equa- 
tions; path integral. 

1. I N T R O D U C T I O N  

F o l l o w i n g  E ins te in ' s  s emina l  p a p e r  on  B r o w n i a n  m o t i o n  in 1905, 

L a n g e v i n  ~1) d e v e l o p e d  in 1908 a de ta i l ed  m o d e l  of  the d y n a m i c s  of  a B r o w -  

n i an  par t ic le .  A c c o r d i n g l y ,  the  pa r t i c l e  e x c h a n g e s  ene rgy  a n d  m o m e n t u m  

wi th  its e n v i r o n m e n t  in t w o  ways.  F i rs t ,  the re  is a f r ic t iona l  force  p r o p o r -  

t iona l  to  the  ve loc i ty  a n d  second ,  the  e n v i r o n m e n t  exer ts  i r r egu la r  pushes  

l Institut ffir Theorie der Kondensierten Materie, Universitiit Karlsruhe, 7500 Karlsruhe, 
Federal Republic of Germany. 

2 Permanent address: Robert Bosch GmbH, 7000 Stuttgart, Federal Republic of Germany. 
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which tend to sustain thermal motion. Hence, we have (for a single degree 
of freedom) the Langevin equation 

m2 + m?2 + V'(x)= ~(t) (1.1) 

where x =  x(t) is the position of the Brownian particle, m is its mass, and 
V(x) is an externally supplied potential. The two peculiar features above 
are the frictional force - m 7 2  and the stochastic force ~(t). 

If the environment consists of infinitely many degrees of freedom inter- 
acting with the particle, one expects that the stochastic force is Gaussian 
distributed. In this case, the ensemble averages (~( t ) )  and (~(t)~(t '))  
characterize the stochastic process ~(t), that is, the Langevin force, 
uniquely. In addition, we assume that the process is stationary; therefore 

(~(t))  = 0  
(1.2) 

( ~ ( t )  ~ ( t ' )  ) = g : ( t  - t ' )  

Concerning the power spectrum 

K(co) = f dt ei~ (1.3) 

we should observe that in classical physics, the dissipation-fluctuation 
theorem implies 

K(co) = 2mTkT (WN) (1.4a) 

where T is the temperature of the environment. Following a common 
terminology, we will call a stochastic source ~(t) a white noise (WN) force 
if its power spectrum is independent of frequency. 

During the past few decades, the Langevin equation (1.1)--and its 
related Fokke~Planck equation--have found numerous applications (2) in 
various fields of natural science. Our interest in Brownian motion has been 
stimulated mostly by investigations on resistively shunted Josephson junc- 
tions, where the difference in the phase of the two superconducting order 
parameters plays the role of the position x(t) of the Brownian particle. The 
corresponding Langevin equation has been studied repeatedly in the 
past(3); however, it has been argued theoretically (4) and confirmed by 
experiments (s) that the voltage noise observed at low temperatures has a 
power spectrum which is not white as implied by Eq. (1.4a), but rather is 
of the quantum mechanical form (quantum noise) 

hco 
/~'(co) = m?-hoe coth 2k~ (1.5) 
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Notice that for small frequencies h ]~o1 ~kT, we recover the white noise 
form (1.4a). In the limit h I~o! >> kT, however, 

~'(co) = m7-h Ico[ (BN) (lAb) 

and we will then call r a blue noise (BN) source. 
One should keep in mind that the power spectrum of Eq. (1.5) implies 

a strong temporal anticorrelation of the Langevin force; in fact, we have 

h \sinh ~kTt/hj (BN) (1.6a) 

provided that coL, Itl >> 1, where r is a high-frequency cutoff, which we 
have, for the moment, introduced in the noise spectrum. Directly related to 
this anticorrelation is the fact that 

f dt ~(t) = 0 (BN) (1.6b) 

for all realizations. 
Calculations aiming to derive the Langevin equation, and particularly 

its generalization to a quantum particle coupled to a quantum environ- 
ment, start as a rule from the Hamiltonian of a total system, where, for 
convenience, the environment may be taken to consist of a set of harmonic 
oscillators 3 coupled linearly to the particle. It is not difficult, then, to 
obtain the so-called quantum Langevin equation, ~7) which is formally 
similar to Eq.(1.1), where, however, x(t) and ~(t) are replaced by 
operators 2(t) and ((t). Furthermore, one finds that the ensemble average 
of the symmetrized form ([~(t)  ~(t') + ~(t') ~(t)]/2) is equal to K ( t -  t') as 
defined by Eqs. (1.3) and (1.5). Various efforts toward "quantum noise" 
and quantum Langevin equations have recently been summarized in ref. 8. 

In order to emphasize the difference from the exact quantum theory, 
Schmid (6) has called the c-number Langevin equation (1.1) where the 
power spectrum of the stochastic force is given by Eq. (1.5) the quasictassi- 
cal Langevin equation (QCL). As a characteristic feature of the discussion 4 
in ref. 6, note that there the quantum mechanical time evolution of the 
reduced statistical matrix of the Brownian particle has been written in 
terms of Feynman path integrals. Corresponding to the two coordinates, 
say x _ �89 of the statistical matrix, two paths 5 x --- x(t) and y = y(t) appear 

3 Alternatively, one may attach an infinitely long string to the particle. See, for instance, ref. 6. 
4 We take the opportunity to draw attention to an earlier paper (9/where a QCL has also been 

derived within a path integral approach. 
5 It has also been emphasized in ref. 6 that this two-path feature establishes a close relation 

to the Keldysh technique (m) of quantum field theory. See also ref. 11. 
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in the functional for the action --i~QM[X(t), y(t)].  In this path integral 
representation, the QCL emerges directly as a result of the approximation 

V(x + �89 V ( x -  �89 ~- yV'(x)  (1.7) 

Obviously, the QCL is exact for a Brownian particle with external forces 
linear in the coordinate. It appears that some aspects--but certainly not 
all--of quantum systems can be described by the QCL. In refs. 6 and 12, 
it has been argued that the QCL should give a reasonable account of 
observable phenomena if the damping is sufficiently large; more precisely, 
if ? >> h/mx 2, where x ,  is a typical scale for the nonlinearity in the potential 
V(x). Furthermore, one may expect that the QCL is adequate in cases 
where quantum noise is a small correction to the predominantly deter- 
ministic motion of the Brownian particle; this applies to the situation 
considered in refs. 4 and 5. 

In the following, we wish to study in detail the implications of the 
QCL, with emphasis on the decay of a metastable state where, initially, the 
Brownian particle is caught in a potential well. In general, one expects that 
the probability P(t) to find the particle in the well decays exponentially in 
time, 

P ( t )  = e - r '  (1 .8)  

provided that the decay rate F is sufficiently small. Defining the bare 
oscillation frequency oo and the relaxation rate ?R of the particle at the 
bottom of the well, this condition is equal to 

F ~ TR, O~o 
(1.9) 

7R = min(7, ~o~/7) 

and we will call such a metastable state a quasistationary state. Let us also 
introduce a standard parametrization of the decay rate 

F =  ~ ae -b (1.10) 

Though the separation in exponential b and prefactor a is not unique, the 
form (1.10) seems to emerge quite naturally as a result of some asymptotic 
approximation to be discussed later. In our investigation of decaying states 
we will consider two types of potentials, both chosen to be antisymmetric, 
V ( - x )  = -V(x) ;  see Fig. 1. Specifically, we will consider a cubic potential 
(cp) 

(1 .11)  
o~ = V"(xA)/m = -- V"(XB)/m = 3 VB/2mx~ 
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V(X) 

Fig. 1. Potential V(x) featuring a metastable minimum at xA and a barrier of height VB at 
x B. In quantum tunneling, the exit point x c plays some role. 

and a piecewise parabolic potential (ppp) 

V(x)=  V8 x 1 (ppp) 
x~ 2 x~J  

,3 
cog = V " ( x A ) / m  = --  V " ( x ~ ) / m  = V ~ / m x  2 

(1.12) 

The contents and the organization of this paper can be summarized as 
follows. In Section 2, we discuss our numerical simulations. 6 There, realiza- 
tions of the Langevin force ~(t) are generated at random in accordance 
with Eq. (1.2), and the QCL (1.1) is integrated numerically for potentials 
of the type (1.11) and (1.12). Specifically, a time-discretized QCL is intro- 
duced in Section 2.1, and in Section 2.2 we explain how to process the data 
in order to obtain the decay rate. In Sections 2.3 and 2.4 we present and 
discuss the decay rates and, to a limited extent, the first passage times for 
the cubic (cp) and piecewise parabolic potentials (ppp), as a function of the 
parameters 7/0)0, V B / k T ,  and k T / h ~ o .  

In Section 3 we outline the analytical calculations which are based on 
an asymptotic expansion of path integrals. 7 As a basis, we introduce in 
Section 3.1 a path integral representation. Of  course, we could have 
immediately started with the representation of ref. 6, but we thought it to 
be instructive to derive it on the basis of the QCL as introduced above. 

6 Part of these results have already been published in ref. 13. 
7 To our knowledge, such an asymptotic expansion of path integrals for the decay rate was 

first published by Caroli et aL ~4) for white noise. This asymptotic expansion corresponds, 
again for white noise, exactly to Kramers' approach of decay I15) for moderate to large 
damping. 
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Essentially, the QCL defines the mapping r --* x(t), and in Section 3.2 we 
emphasize fundamental properties of the Jacobian d[r which 
follow from the causality principle. Section 3.3 is meant to explain some 
specific features of path integration as well as the transition from the one- 
path Ix(t)] to the two-path Ix(t), y(t)] formalism, which will later allow 
the transition from the approximate quasMassical action Mix(t), y(t)] to 
the quantum mechanical action 8 ~QM[X(t),y(t)]. In Section3.4, we 
rewrite the action in terms of reduced variables, whereas Section 3.5 
contains the definition of the extremal paths that form the backbone of the 
asymptotic expansion. 

As a rule, the asymptotic expansion is justified for quasistationary 
states as defined by (1.9). In terms of model parameters, this means 
essentially that 

VB>>kTN; TN ~ max(T, TB) (1.13) 

where the so-called crossover temperature TB is, in the limit of strong 
damping ~ >> COo, 

kT~ - hco~ (1.14) 
2rc7 

The simplest types of extremal paths are kink and antikink, which are 
paths that connect the bottom and top of the well. It is a characteristic 
feature of the Langevin equation that there are interactions between kink 
and antikink which lead to a combined object. The short-range interaction 
is analyzed in Section 3.6. Next we discuss in Section 3.7 the Gaussian 
fluctuations about extremal paths and then we show in Section 3.8 that the 
fluctuations about the combined object lead to long-ranged attraction 
("confinement") between kink and antikink. As a result, we have to handle 
the integration with respect to the collective coordinate representing the 
kink and antikink separation very carefully. Eventually, we arrive at the 
exponential law of decay of the form (1.8) and (1.11), where the prefactor 
a and exponential b are presented in terms of calculable expressions. For 
high temperatures T~  TB, we recover in leading order the white noise 
(WN) result, where b = V~/kT. 

As shown in Section 4, the advantage of the piecewise parabolic poten- 
tial (ppp) is that all these calculations can be done explicitly. The approach 
to a self-consistent solution of the extremal paths is outlined in Section 4.1, 
and in Sections 4.2-4.4 the antikink, the kink, and the combined object are 

8 According  to Eq. (5) of ref. 6, the not ion  is such  tha t  -~QM[X(t), y ( t ) ]  = --(i/h)S*[x(t)], 
where x( t )  = (x(t), y(t)). 
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discussed in detail. While the exponential b is directly proportional to the 
action Nk of the kink, the prefactor is related to the Gaussian fluctuations. 
It is also an advantage of the ppp that, as shown in Section 4.5, the fluctua- 
tion determinant can be calculated explicitly. At this point, we acknow- 
ledge that for the ppp, the decay rate has been calculated by Luciani and 
Verga ~ by the same methods for a Lorentzian noise, where 

ff2c(CO)_ 2mTkT (1.15) 
0)2152 _~_ 1 

Our work is a generalization of the analytical expressions to a noise source 
of arbitrary color, though in our specific calculations, a quantum noise of 
the type(1.5) has been assumed. For the sake of completeness, we 
reproduce the results of ref. 16 for Lorentzian noise in Section 4.6. 

Perhaps it is worthwhile to note that at the beginning of our work, we 
did have some doubts whether a Langevin equation with a noise power 
increasing indefinitely with frequency, RT(co)oc )o1, has a well-defined 
meaning. All our investigations suggest that the answer is positive, 
provided that the acceleration term m2 is retained in the equation of 
motion. 

In Section 5, the cubic potential (cp) is considered. Corrections to the 
white noise limit, which can be computed analytically in the strongly dam- 
ped limit COo ~ 7, are presented in Section 5.1. Although the prefactor can 
only be calculated for white noise and strong damping, we have outlined 
such a calculation in Section 5.2, since it has some tutorial value. Numeri- 
cal calculations for strong damping but arbitrary temperatures are dis- 
cussed in Section 5.3. 

In Section 6, we formulate the problem of calculating the quantum 
decay in real time by reconsidering our previous calculation, but making 
use of the quantum mechanical action ~QM Ix(t), y(t)]. We find that above 
the crossover temperature T> TB, an extremal path of the type of a kink 
exists, but that ~QM is such that we have always b = VB/kT. Hence, we 
have to conclude that even the high-temperature corrections of the exponen- 
tial b as calculated from the QCL are an artefact of the quasiclassical 
approximation (1.7). 

On the other hand, we show in Section 7 that the QCL reproduces 
correctly the effects of quantum noise in a Josephson junction as postulated 
in ref. 4 (and confirmed later experimentally in ref. 5). We summarize our 
results in the concluding Section 8. 
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2.1. Quasiclassical Langevin Equation in Discrete T ime 

The strong temporal correlation of the Langevin force--see 
Eq. (1.6)--requires that we select a finite (though sufficiently long) time 
interval {= t s -  t~; for convenience, we put the initial time t~=0 and the 
final time ts= t~ Essentially, a simulation comprises three steps: (i) selection 
of a realization of the Langevin force; (ii)integration of the QCL; and 
(iii) observation of the time r required for a decay event. 

Since we are only interested in quasistationary states, we will find that 
the decay time observed in one realization is almost independent of the 
initial conditions if the initial position and velocity are close to the local 
equilibrium values of the metastable minimum; in fact, the choice x~ = xA 
and ~ = 0 has proven to be adequate. 

We integrate the Langevin equation by solving the discrete-time QCL 

m(x)n + mT(2)n + V'(x , )  = ~ 

where n labels the time steps 

t,, = A t �9 n, 
and where 

(2.1) 

n =0,  1,..., N =  {/At (2.2a) 

x .  = x(  t . )  

( 2 ) .  = ( x . +  l - x . _  1)~(2At) 

(~ ) .  = ( x .  +1 - 2 x .  + x . _ 1 ) / ( 4  t) ~ 

(2.2b) 

We have made extensive tests which show that our results do not depend 
on the discretization (2.2) or on the temporal average (2.3) of the Langevin 
force provided that At ~O9o 1. 

The best adaption of a correlated noise to a finite time interval is by 
means of a periodic extension, ~(t + t) = ~(t). Hence, we put 9 

1 N/2 ~TT 
4. =-k=t  ~ ~(v~)e ivk,.; v~= ~_ k (2.4) 

--N/2+ 1 t 

9 Strictly speaking, one should define vk such that Vk+u= v k. The theory of lattice vibrations 
suggests that we should choose vk=2  [sin z t k / N l / A t = ( 2 / t ) N l s i n r c k / N I .  In the present 
problem, this detail has no influence on the final results. 

Furthermore, ~n is the stochastic force averaged over a time interval At: 

1 f~,/2 
4. = 3t  -~,/2 dt' ~(tn + t') (2.3) 
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and choose the complex Fourier amplitudes ~(v~) to be independent 
Gaussian random quantities with dispersion 

(l~(vkl = ) = k(vk) (2.5) 

Thus, a realization consists of N quantities ~(vk) that have been chosen 
according to the above specification. 1~ Eventually, the stochastic force in 
discrete time is found from Eq. (2.4). 

Concerning some technical details, we have typically chosen t-~ 104/~o 
and dt~0.2/co o (N,-~5 x 104). Generally, we need to sample only over 
,A#0 ~ 103 realizations except in extreme cases (large barrier height or large 
damping), where it has been necessary to take up to ~0 ~ 3 x 104 realiza- 
tions for reasonable accuracy. ~a 

2.2. The Decay Rate 

According to our observations, the simple choice of initial values 
xn = XA for n ~< 0 is sufficient. Now, for each realization ~J) of the stochastic 
force we define a first passage time ~(J ) (x)=r j ) (x)  from the condition 
x~{ )-1 <x~< ~'(J)-~n , which is the time the Brownian particle needs to pass the 
point x. As it turns out, r(j)(x) is independent of x for x > Xo at least on 
the scale of the decay time F -x, provided that F'~VR. Therefore, it is 
justified to identify z(J)(Xc) with the decay time of that particular realiza- 
tion. 

In the case of a decay exponential in time as given in Eq. (1.8), the 
inverse F - 1  of the decay rate should be calculated according to 

1 ~0 
r - '  = ~oo j_}_.l r(J)(Xc) (2.6a) 

However, we have to keep in mind that the ensemble (of Yo realizations) 
is observed only for a finite time interval t2 Consequently, only ~ realiza- 
tions (~ /~<~o)  are seen to decay. Therefore, we propose to improve 
Eq. (2.6a) as follows: 

F -~=-1 {~= ~(J~(Xc)+i(~o-J1)} (2.6b) 
Jf~ j i 

The second term is just the mean contribution of events where r(Xc)> {. 
lo We emphasize again that the strongly correlated noise requires the time interval t-to be 

fixed at the beginning. There is no need to do so in case of uncorrelated noise (WN) or 
weakly correlated noise. See, for instance, ref. 16 for Lorentzian noise. 

H This means that in extreme cases, the Brownian particle is observed altogether for ~ 109 
time steps. The CYBER 205 we are using needs for this job about 1 h of CPU time. 
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It is convenient to compare the decay rate F with the intrinsic fre- 
quency COo/2rc [as already implied in Eq. (1.10)]. Furthermore, on account 
of its exponential dependence on the parameters, we will use the (negative) 
logarithmic decay rate 

= In COo (2.7a) 
2~F 

in the presentation of the numerical data. Note that in terms of the form 
(1.10) 

cr = b - In a (2.7b) 

2.3. Data for the Cubic Potential  (cp)  

In Fig. 2, the data (dots) obtained from simulations of the QCL in the 
white noise limit, i.e., for K(CO)= 2mykT,  are compared with Kramers '(is) 
moderate damping result (straight lines), where in Eq. (2.7b) we have to 
insert 

v~ 
b = (WN) 

k T  

1[(  ,lj2 1 a = - -  COo~+g~ 2) 1 
COo - 2 ~  

(2.8) 

Clearly, our data are in good agreement with the theoretical prediction for 
VB > kT.  The fact that for 7 = 0.3coo and for V8 < k T  the observed value of 
a is slightly larger than the theoretical one can be explained by corrections 
to the prefactor, related to nonequilibrium effects, which are known to be 
important for 7/e)o ~kT/VB. (15"17) 

The strong anticorrelation of blue noise--see Eq. (1.6)--manifests 
itself in a peculiar position dependence of the first passage time which is in 
contrast to the case of uncorrelated white noise. In Fig. 3, we plot a(x )  = 
l n [ ( ~ ( x ) )  coo/2~], where (~ (x ) )  is the mean value of the first passage 
time as a function of x, which has been calculated by generalizing 
Eq. (2.6b). For  white noise, cr(xs) is close to its asymptotic value e ( x  ~> xB); 
in fact, the theoretical prediction 12 is a ( x  ~> xB) - a ( x s )  = In 2, which means 
that the particle on the top of the barrier has two equal choices, either 
going backward or forward. For  blue noise, on the other hand, the mean 

12 See, for example, Section 5.2.7 of Gardiner. (2) The prediction is valid only for 7 >> coo. For 
7 = 2coo, we have found that cr(x ,> xs) - a(xs) ~- 0.5 In 2. 
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VB/kT 
0 / , , , , I L , , ~ 

0 5 10 
Fig. 2. Numerical data (points) of the logarithmic decay rate cr =ln(oao/2nF ) vs. VB/kT in 
the white noise limit (T>> TB) and for the cubic potential (cp). For comparison, we show 
Kramers' moderate damping result (straight lines) for ~//o0 = 3 and y/e) 0 = 0.3. 

first passage t ime ( z ( x s ) )  on the top  of the bar r ie r  is orders  of magn i tude  
smal ler  than  the mean  escape t ime ( z ( X > X c ) ) .  This difference can be 
unde r s tood  as follows. F o r  the par t ic le  to reach the top,  it requires tha t  the 
Langevin  force is in the posi t ive d i rec t ion  for a compara t ive ly  long t ime; 
therefore,  the t empora l  an t i cor re la t ion  of the blue noise implies  that  subse- 
quent ly  the p robab i l i t y  for a negat ive  Langevin  force is large, which means  
that  the par t ic le  is very l ikely being pushed  back  into the we l l  The results 
p resented  in Fig. 5 indicate  tha t  the escape has become definite beyond  X o  
where the sys temat ic  force - V ' ( x )  is large enough  to overcome fluctua- 
t ions in the Langevin  force. 

10  , , 

f c~(x) 

5~- 

0 i i  l l [ J i ; i  
0 1. 1.5 

' ' I , i '  , I ' ' ' ' - -  

[ 

I --7-*- . . . .  " - - ' - - ' - - ' - -  
l 

K I " 

x 

I 
t 

I X / X  C 
, J , f ,  

.5 
Fig. 3. Logarithmic first passage time G(x)=ln(o~o(Z(x))/2n ) for white noise (T=2.5TB; 
crosses) and for blue noise (T= 0; dots), respectively, in the case of a cubic potential (cp). 
Other parameters are 7 = 2o~0 and V B = hco o. The horizontal line K corresponds to Kramers' 
result. Dashed vertical line, x = x B. 
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Each data point in Fig. 3 represents J/o = 103 realizations of the 
stochastic force. In the blue noise limit and for x > x c ,  we have ,--600 
inconclusive events for [ ~  104/O)o. The fluctuations in the data for x > x c 
indicate that the statistical error is a few percent when the decay time is 
small, say ~r > 7. 

The temperature dependence of the logarithmic decay rate 
a = ln(~Oo/2~zF) is shown in Fig. 4 for V8 = h~o0. We find a rather broad 
crossover from the white- to the blue-noise-dominated regime roughly at 
the temperature T~ given in Eq. (1.14). For  comparison, the white noise 
result of Kramers [see Eq. (2.8)] is shown by a solid line. 

We have also studied in detail the dependence of the decay rate on the 
barrier height VB and on the damping 7 in the blue noise limit ( T = 0 ) .  
From the data shown in Fig. 5, it is evident that for not too small damping 
(y>~Oo), we have ~r,,~(Vs/hcoo)(y/~Oo) to a good approximation. For  
comparison, we show also the result of a calculation of the exponent b 
(Section 5.3), where in the limit ~/~Oo >> 1 the result 

b=4 .2  Y VB =0.67 VB (BN) (2.9) 
~o h~oo k T ~  

[-cf. Eq. (1.14)] has been obtained. The numerical results for a are rather 
close to the expression (2.9). In view of Eq. (1.10), this means that the 
prefactor a ~ 1 (we have not succeeded in calculating the prefactor in this 
c a s e ) .  

We note that in the same limit Caldeira and Leggett (18) have 
calculated from a quantum mechanical tunneling theory a decay rate with 
an exponent b(CC~=37r(vVB/ho9g)= 3 V B / k T  B. Thus, we obtain from the 

lO 

i f "  . . . . .  

[ i o 
o 5 10 

i 

A 

B 

C 

vB/k-r 
I 

15 20 

Fig. 4. Temperature  dependence of the logarithmic decay ~ = ln(co0/27zF ) for V B = hco o and 
(A) 7 = 3coo, (B) 7 = coo, and (C) 7 = 0.3coo. The numerical data are represented by points; the 
solid line shows the white noise result of Kramers  for 7 = 3coo. 
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I" 0 I I I 

0 I 2 3 4 

Fig. 5. Numerical data (points) of the logarithmic decay rate a = ln(co0/2nF) vs. ,//COo for the 
cubic potential (cp) and for blue noise (T=0) .  The parameters for VB/hCOo are (A) 1.83, 
(B) 1.33, (C) 1.00, (D) 0.5. The solid lines represent the exponential b of the asymptotic 
result (2.9). 

QCL an exponent of the decay rate which is a factor of 0.67/1.5 ~ 1/2 
smaller than from quantum tunneling. 

Blue noise is only meaningful if the mass m is kept finite. 13 Therefore, 
we understand that the data of a simulation for m = 0  depend on the 
discretization. In fact, (At) 1 serves as a high-frequency cutoff which for 
finite mass is given by COo = [V"(x,~)/m] u2. 

2.4. Data for the Piecewise Parabolic Potential (ppp) 

In Fig. 6, the data (dots) obtained from simulations of the QCL in the 
blue noise limit, i.e., for K(co)=mTh Ico], are compared with analytical 
results (solid lines) of an asymptotic expansion to be presented in Sec- 
tion 4. The agreement is very good if the condition (1.13) for an asymptotic 
expansion is satisfied. We conclude that the strong increase of the noise 
power with frequency/~'(co) oc tco] poses no problem in numerical simula- 
tion or in analytical calculations provided (see footnote 13) that the 
acceleration term m2 is retained in the Langevin equation. 

I3 Compare this with the fact that the width (x  2 >1/2 of a damped harmonic oscillator diverges 
logarithmically for m---,0. See also the comment at the end of the paragraph below 
Eq. (HS). 
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Fig. 6. Numerical data of the logarithmic decay rate a=ln(~oo/2rcF ) vs. y/~Oo for the 
piecewise parabolic potential (ppp) in the blue noise limit (T= 0). The parameters for V~/hmo 
are (A) 1.25, (B) 1.0, (C) 0.75, (D) 0.5. The solid lines are the result of the asymptotic calcula- 
tion, which has been carried through for 7/~Oo > 2. 

3. ASYMPTOTIC EXPANSION 

3.1. Path Integral Representation 

Since the Langevin force 14 ~t is a Gaussian process, the probability for 
its realization is a Gaussian functional: 

W[~t] = c o n s t - e x p - ~  dt dt' ~Nt,,~c (3.1) 

Specifically, W[~,]  d[~,] is the probability to find a realization in the 
region [ ~ t ] " "  [~ ,+  d~,] 
of K,,, : 

of the function space, and N.,  is the inverse 

f dt N,iKi, ,  = 6( t  - t ')  (3.2) 

Note that the above ansatz implies the form (1.2) for the correlators. Also, 
one may convince oneself easily that for a discretization as introduced 

14 In the following, we indicate the time (as well as frequency) dependence of the quantities 
by a subscript; e.g., x t := x(t) and K,c :=/g(t-- t'). 
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in Section 2.!, the functional above is replaced by a mult idimensional  
probabil i ty distribution. 

At this point  we emphasize that  we have to consider processes ~ in 
the total time domain  ( - o %  + o  o) in order  to guarantee stationarity 15 
(translational invariance in time). Correspondingly,  the time integrations 
above run along the entire time axis. 

We obtain  the probabil i ty functional Pixy] for the stochastic process 
x, if we interpret 16 the Langevin equa t ion(1 .1)  as a mapping  ~ , - - ,x , .  
Note that the Jacobian d[~t]/[dx~] of this transformation is a constant 
independent of x,, provided that m r O. In  fact, we will show in Section 3.2 
that this proper ty  17 is a consequence of  causality: we interpret the Langevin 
equat ion (1.I) such that  the force ~, will influence xt only at later times. 
Consequently,  

P[x,] = const  .exp - ~ [ x , l  

where the action is given by 

1 
d[x,3 =~ f dt dr' C[x,] ~,,,~[x,,] 

~[x t ]  = m2, + my2, + V'(x,) 

(3.3) 

(3.4) 

:3.2 The  J a e o b i a n  

Recall that  the Jacobian  is defined as a determinant  

d[x,] = met ~ (3.5a) 

where 

~,  
= 6 ( t -  t')[mO 2 + m70, + V"(x,)]  (3.5b) 

(~X  t , 

Usually, the 6-function is omit ted since its contr ibut ion is absorbed in the 
normalization.  

15 The periodic extension introduced in the numerical simulations of Section 2.1 comes closest 
to this requirement. 

~6To our knowledge, Graham (tg) was the first to make use of this interpretation in a 
systematic way. At this point, we draw attention to a recent paper on path integral formula- 
tion of Langevin equations with colored noise by Hiinggi. (2m 

17A related feature is found in the Keldysh technique, where the generating functional is 
always properly normalized (the sum of vacuum diagrams is zero). 
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Assume that V"(x,) has a definite limit V~ for ItJ ~ ~ ,  and that this 
limit corresponds to some local equilibrium V:o >~ 0. Correspondingly, we 
define an unperturbed Green's function 

(m• 2 + m?~3 t + V'~ ) GOt, = 6( t - t') (3.6) 

If one imposes the condition that G, ~ remain finite for [t[, It'] ~ ~ ,  one 
finds that G, ~ = 0 for t ~< t'. As a simple example, consider the case where 
V~ = 0; then 

G,~ 1--~- [ 1 - e  ~(' c)] (3.7) 
m7 

Except for a constant, the Jacobian is equal to 

d[~,] = det[mO 2 + mT~ , + V"(x,)] 

d[xt]  det [mc3,2 + m7c3, + V~] 

Then, it follows from Eqs. (3.6) and (3.8) that 

(3.8) 

a I - L ]  ~ 0 v"(x , , )3  In ~ = ~p ln[6(t - t') + G, ,A  (3.9) 

where A V;'= V " ( x , ) -  V~ .  In a perturbation expansion, we have 

ln[6(t - t') + G~ V[;] 

=G,,A~ V , , _ l _ f  d{GO3VTGOrAV;:+ 2 (3.1o) 

Considering the fact that G~ = 0 for t ~< t', we arrive at the conclusion that 

1 d I - L ]  
n d-~t-jt] = 0 ( m r  (3.11) 

Let us now consider the overdamped limit where the acceleration term 
mS~, is omitted in the Langevin equation. Then, Eq. (3.6) has to be replaced 
by 

(m?~3, + V~)  G, ~ = 6(t - t') (3.12a) 

and one finds that the appropriate solution is discontinuous, since G, ~ = 0 
for t<~t', while G,~ 1~my for t--+ t ' + 0 .  Let us consider a symmetric 
formulation (see e.g., Schulman, (21~ Chapter 5), where 

1 
o (3.12b) G g t  - -  

2m7 



Quasiclassical Langevin Equation 901 

Then, we obtain from Eq. (3.10) 

d [ L ]  i , 
l n d [ x ,  ] 2m7J dtAVT; m=O (3.13) 

which agrees with the form of the Jacobian  quoted in the literature (14'16'~9~ 
for the overdamped  (Smoluchowski)  limit, is 

3.3 Path Integrat ion 

The probabil i ty for a part icular event (e.g., decay of a metastable 
state) to occur is obtained by summing P[x,] of Eq. (3.3) with respect to 
all paths x, that  include this event (see Schulman (21) for an introduct ion to 
path integrals). Thus 

P(event)  = I '  d[x,] P[x,] (3.14a) 

where the prime on the path integral means the restriction to the 
appropr ia te  paths. 

At this point, we recall the fact that  the Langevin force Ct is correlated 
for very distant times. Consquently,  the process (xt, 2t) is not  Markovian ,  
since the posit ion and the velocity do not  specify uniquely an initial state 
(this point  has been made very clear by Hiinggi (22). In our  approach,  this 
peculiarity shows up mathematically,  in the fact that  all time integrations 
run along the entire time axis. Therefore, the path  integral has to be done 
with respect to all paths x, in the range ( - ~ ,  + o o )  which satisfy the 
requirements of the event in considera t ion} ~ Presently, we prepare the 
Brownian particle in the well at the initial time ti and ask for the probabil-  
ity P that  the particle is still in the well at the final time t z. Consequently,  
we obtain  this probabil i ty by summing the contr ibut ion of all paths x, 
where the Brownian  particle has rested in the past  t < ti at the point  2~ xA 

~s We emphasize that the discontinuous behavior of the Jacobian at m =0 will be compen- 
sated in the calculation of physical quantities. This is certainly true for the decay rate F, 
which is continuous at m = 0. 

2o Note the analogy to measuring processes in quantum mechanics. In the simplest case there 
the event consists of two simple measurements where the first one is usually called a 
preparation process. See, for instance, ref. 23. 

21 One may ask whether this definition should not be generalized such that the event is also 
given if x t passes a suitably chosen environment of x A. For quasistationary states, however, 
where F<  ~ this generalization produces only a factor which is the same for all contribut- 
ing paths. Hence, it does not change the expression for the decay rate. The reason for this 
insensitivity to a precise definition is that for F<  Ye, we may define kinks and antikinks by 



902 Eckern et  al. 

of the metastable minimum and will have returned to xA at t s for the rest 
of its life. 

Later, we will find it convenient to make use of a path integral 
representation where an auxiliary variable Yt appears. Accordingly, we 
define 

Q[xt, yt] = const .exp - ~ [x t ,  yt] (3.15a) 

where 

Obviously, 

M[xt, y , ] = ~  dtdty,K,,y,+i dtr (3.16) 

PEx,] = f dEy,] Q[xt, y,] (3.15b) 

and we may write for the probability of the event under consideration 

P(event) = f' d[xt, Yt] Q[x. y,] (3.14b) 

In general, we have to require that Yt vanish for times in the very past and 
in the distant future. 

At this point we recall the path integral representation of ref. 6, for the 
temporal evolution of the reduced statistical matrix of the Brownian 
particle, which involves the quantum mechanical action (see footnote 8) 

1 
yt] = ~ f dt dt' yt~2tcYc ~QM[Xt, 

+i f dt {[m2t+m,2t] Y,+ V(x,+~ Y , ) - V ( x t - ~  Yt)t 

(3.17) 

One recognizes immediately that the action ~ of Eq. (3.16) is obtained 
from MOM of Eq. (3.17) by the approximation (1.7). 

imposing conditions on their long-time asymptotic behavior. (This is also why the non- 
Markovian nature of the process does not lead to extra difficulties.)--In this context, we 
draw attention to the detailed analysis of this problem in ref. 14.--Note that the insen- 
sitivity as regards to details is why the event "nondecay" is so popular in decay processes 
of all kinds. See, for instance, ref. 24, where the instanton approach to quantum tunneling 
is explained. 
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In the following, we will evaluate the path integrals asymptotically by 
restricting our attention to the vicinity of extremal paths. Since P[x,] and 
Q[xt, yt] are connected by the Gaussian integration (3.15b), the result of 
the asymptotic theory will be the same for both forms. 

Of course, we could have based the functional integral representation 
immediately on Eq. (3.17) and on its approximate form (3.16). However, it 
has been our intention to put emphasis on a Langevin equation with 
(arbitrarily) colored noise, and therefore we have chosen this indirect but 
instructive approach. 

3.4 Reduced Variables 

~n the case of moderate to large damping, the characteristic rate of the 
particle in the well [cf. Eq. (1.9)] is given by 78 = o92/7 ~ COo. This suggests 
that we introduce dimensionless time, 
variables 

col co* 7 t * = l - - ,  = C O ' -  
co2 

frequency, and also temperature 

7 1 
kT*=O=kThco2, OB=2r c 

(3.18) 

where the value for the reduced crossover temperature follows from 
Eq. (1.14). In addition, we define 

Xt Yt x* = - - ;  y* = - -  (3.19) 
XB XB 

Obviously, x * =  - l (  + 1) for the particle at the bottom of the well (top of 
the barrier). Furthermore, 

! 

~ '* - mco  2 x . 

where 

and 

- -  ~,  = M ~ , *  + . t?  + e ' ( x , * )  (3.20) 

M = co2/72 (3.21) 

1 
q)(x*)- 2 2 V(x) (3.22) 

m ~ o X  B 

For convenience, we omit in the following the asterisk everywhere except 
in the final result, where F =  (0)2/7)F*. 

822/59/3-4-24 
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Specifically, we have 

q,(x) = ~ x 1 (cp) (3.23) 

for the cubic potential (1.11) and 

l lxl) (ppp) (3.24) q~(x)=x ( 1 - ~  

for the piecewise parabolic potential (1.12). Clearly, (p'(_+l)=0 and 
q~"(+_ 1) = T-1 in both cases. 

Of interest will be some properties of the deterministic motion r = 0 
for small displacements from the equilibrium points x = _+1. The general 
solution is 

c~ e x p ( - ) ~ t ) + c f  exp(2;t);  x =  +1 
(3.25) 

c~- e x p ( - 2 1 t ) +  c ~- exp( -22 t ) ;  x =  - 1  
where 

;~+= 1 
2 2--M [(1 +4M)1/2-+ 1] 

(3.26) 
1 

2~- = ~  [1 _+ (1 - 4 M )  '/2] 

Note the relations 
1 

4 ? > ) , ? > 0 ;  )~?-2~--  M 
(3.27) 

2; ~ - 2 ;  =2;- + 4 ;  

Of importance will also be the dimensionless quantity 

m T x ~ 7  f31/2 (cp) 
Oh' h h6oo 2 VB .Uo, Uo = ,  (ppp) (3.28) 

which allows us to write in terms of the new quantities (asterisks omitted 
again) 

Q[x, ,  yt] = const .exp - q l~[x, ,  y,] 

= dt y ,K . , yc  + i dt ~,Yt ~ [ x , ,  y , ]  -~ at  ' - 

(3.29) 
4, = M2t  + Yc, + q/(x,)  

6O 

J~o, = 6O coth 2--0 
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Note also that in these reduced variables, 

P[x,] = const .exp - 5&~C(x,) 

1 

1 o9 
N ~ o  = - -  t a n h  - -  

co 20 

(3.30) 

3.5. Extremal Paths 

We expect that typical values of the (reduced) frequency are of the 
order 2 f  ~ 1. Similarly, we estimate that ~t and S dt ~t are also of the 
order 1. Therefore, we have ~ ~ m i n ( 0  -1, Io91 1 1), and it follows that 
~#s~[x,] as given in Eq. (3.30) is of the order VB/kTN, where TN has been 
introduced in Eq. (l.13). We conclude that the condition VB~kT u as 
stated in Eq. (1.13) guarantees that the main contribution to the functional 
integrals comes from small regions in the vicinity of extremal paths (x p, yf)  
which minimize the action ~ .  Note that these paths are also extremal 
paths of the extended action N. Therefore, we look first for solutions of 

6~  6~  
- - = 0 ;  =0;  (xy, y , ) =  (x p, yP) (3.31) 
6x, (~Yt 

The ensuing values for the action will be denoted as follows: 

d p = NP = ~ [ x  p ] = ~ [ x  p, y f ]  (3.32) 

Explicitly, Eq. (3.31) corresponds to the following equation of motion: 

[ M L  ~ - ~, + ~0"(xf)]  4 f  = 0 

[M~f  + ~f + o ' (xf) ]  + f dC g,,,4f, = 0 

~f  :=  -iyf 

(3.33a) 

(3.33b) 

(3.33c) 

Above we have introduced the notation ~bt=-iy~ in order to avoid 
imaginary quantities. 

First of all, note the trivial solutions x + = _+1 and ~b + = 0  ( p =  + ). 
Most important are kink- and antikink-like solutions (p = k, a) which con- 
nect the two trivial solutions. For illustration, see Fig. 7, where a kink (at 
tk) is followed by an antikink (at ta) such that the combined object (p = c) 
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• 

L t 

Fig. 7. Kink followed by and antikink centered at tk and ta, respectively. Together they form 
a combined object which contributes to the probability P that the Brownian particle remains 
in the metastable well. 

is a path which contributes to the probabili ty of the particle remaining in 
the metastable state as explained in Section 3.3. 

Consider now an isolated antikink centered at t , = 0 .  It obeys the 
deterministic equation ~b~' = r = 0; explicitly, 

M27 + 27 + (P'(xT) = 0 (3.34) 

For  illustration, we give the solution of the above equation in the limit 
M = 0 :  

- tanh t/2 (cp) 
xT= _ ( l _ e - l t l )  sgn t (ppp) (3.35 

A more detailed description is given in Sections 4 and 5 for ppp and cp, 
respectively. 

Consider next an isolated kink centered at tk = 0. In general its func- 
tional form is not so easy to obtain and its discussion will be deferred to 
Sections 4 (ppp) and 5 (cp). However, in the white noise limit (WN) where 
B2,c = 2 0 6 ( t -  t') one can show 22 that the kink is a time-reversed antikink 
such that, for arbitrary M, 

1 
a . k _  .a (WN) (3.36) x, = x _ , ,  

Note that the antikink, as well as the kink in the white noise limit, 
approach their asymtotic values exponentially fast. In contrast to this 
behavior, the kink shows only an algebraic asymptotics in the blue noise 
limit (BN), that is, for 0 = 0. 

Calculating the extremal values of the action, we find that 

1 
f q~,KtcOc, 0 (3.37) ~ k = =  dt dt' ~-  k. ~ a =  

2 

22 Note that [Ma 2 + at + ~o"(x~)] 27 = 0. 
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Therefore, we have in the white noise limit 

1 1 (WN) 
~ = ~  i dt(~-')2 = 4~ 

~Nk V8 
kT 

For later reference, we define here the normalization 

fl2p=fdt(12fl2+ !~fl2); p=a, k,... 

1 ~ = -  
UO 

(3.38) 

(3.39) 

3.6. K i n k - A n t i k i n k  In terac t ion  

Approximately, the combined object shown in Fig. 7 can be represen- 
ted by 

c k a - - 1  
X t ~_ X t _ t k - l - X t _ t a  

0~- 0 h t t k 

(3.40) 

provided that kink and antikink are well separated, ( t a -  tk) >> 1. For large 
separation, we also have 

N c =  N~ (3.41) 

However, there is, strictly speaking, no solution of Eq. (3.33) resem- 
bling a combined object, due to the attractive interaction between kink and 
antikink. In order to overcome this difficulty, we add to the action a source 
term 

VEx. y,] = S~Ex,, y,] + ~  ...... [x,]  

. . . . . .  = -b[dt[1 + x / ]  
J 

(3.42) 

which is meant to pull kink and antikink apart. Indeed, there exists now 
an extremal path (x~, ~b~, ) which minimizes Z and which is a function of b. 
Thus, 

~ c = ~ ( b )  (3.43a) 
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~?cgc 
c3b = -2t0;  to = ta - tk (3.43b) 

This means that in the Legendre transform 

Me(to) = cgc c~cgc = ~ q-- ,~int(to) (3.44) - b--~- 

a term r appears which has the meaning of a kink antikink inter- 
action. Later, we will find for ppp that 

~int(t0) = _ g ~ k  exp(--2~-to) (ppp) 

g = 2 - 2 ]  = (2? + 2 + )/2 + (3.45) 

provided that 22 ~ to >> 1. One may be surprised about the exponential decay 
above, since the kink asymptotics is only algebraic for 0 = 0. Nevertheless, 
we have reason to assume that the form (3.45) is also valid for cp, where 
g is expected to be also a factor of order unity. 

3.7. Gaussian Fluctuat ions about  Extremal Paths 

Let us introduce the small quantities 

L = x , - x f  
(3.46) 

~ , = r 1 6 2  

Then, we have through second order 

~ [ x , ,  y , ]  = ~ + ~ ' [ L ,  ~,3 
(3.47) 

(~  may also be replaced by ~), where the fluctuation operator ~ P  is given 
by 

(r ~ ) + K t c ( ~  01) (3.48) Jt~P,' = ~5(t- t') \ h p 

23 Except for small corrections of order (2 3 )  1 which are due to the fact that the "center of 
mass" of kink and antikink does not  coincide exactly with tk and to, respectively. 
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Above, h p is the differential operator 

h / = M0~ + 8, + qo"(x p) (3.49) 

and its adjoint operator hP is obtained by letting c? t --* -c~. We also define 
the retarded Green's function 

h f c f , ,  = ~ ( t  - c )  (3 .50)  
GP,, = 0 for t < t '  

Note that Gfc is bounded for Id, It'l-+ oo if "" p ' ~0 tx + oo) > 0, i.e., when x p 
approaches a local equilibrium position in distant times (compare Gf,, with 
the Green's function G, ~ introduced in Section 3.2). In fact, this is the case 
f o r p =  - , c .  

Let us now consider specifically the combined object where p = c. As 
an important point here, note that the fluctuation operator j~r has, in 
addition to the eigenvalue zero of the translational mode, an exponentially, 

-.~ e x p ( - 2 ~  to), small eigenvalue of the breather mode which is a motion of 
kink and antikink against each other. Clearly, the Gaussian aproximation 
breaks down in these two cases; instead, we have to integrate with respect 
to the translational (tr) and the breather (ts) time coordinate, including a 
proper weight, say wTs. On the other hand, these two coordinates are just 
linear combinations of kink and antikink positions tk and ta, respectively. 
In the last case, it is known (2L24) that the weight is just flk[ta/2g, where the 
normalization//p is defined by Eq. (3.39). 

Considering, then, a finite time interval, say 0 < tk < ta < {, and normal- 
izing the path integral by division with the Gaussian fluctuations about the 
stable trivial path where (x 7,  r  ( - 1 ,  0), we obtain the contribution 
P~({) of one combined object to the probability P(i)  of the particle to 
remain in the well: 

p,(t-)=fl.Bk~f~dtk ~i (det ~ - )  '/2 Jtk dta \~et"~,,  ] e x p r - ~ c ( t . -  tk)] (3.5t) 

where NO(to) is given in Eq. (3.44). The double prime in det" ~ c  means 
that the translation and breather eigenvalues have to be omitted; note that 

(det o / /~ - /de t "  ~ / ~ 9 c )  1/2 ~--- d//(det W - / d e t "  Wc)uz 

Assuming the interaction between different combined objects to be 
negligible, we have in the usual dilute gas approximation for n combined 
objects Pn(O = [Pl ( t ) ]" /n  !; thus, after summation with respect to n (n = 0 
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includes the trivial path p = - ) ,  we obtain the total probability of the 
particle to remain in the well: 

P(t) = exp PI([) (3.52) 

3.8. Properties of the Fluctuat ion Determinants  

Roughly, one may distinguish three different contributions to det" ~ c  
of Eq. (3.51). Two contributions are connected with the transitions between 
the trivial paths as represented by kink and antikink. The third contribu- 
tion is connected with the sojourn at x = + 1. We can understand the last 
contribution by calculating det W+/de t  gcf- for, say, a time to. Assuming 
periodic boundary conditions and taking frequencies mn= 2rm/to, we find 
that (for 2~ to ~ oe) 

detdet ~ + ~ ~ -  Mco~ ++ i~o nie)n -+ ~ exp(22f  to) (3.53) 

provided that M r 0. On the other hand, 

det ~ +  ie)n-  1[ 2 
- [ I  ~ ~ 1 ( M = 0 )  (3.54) 

det ~,~- 

We emphasize that this discontinuous behavior is exactly compensated by a 
discontinuity (see footnote 18) of the Jacobian d[~t]/d[xt] as discussed in 
Section 3.2 [cf. Eqs. (3.11) and (3.13)]. 

In the following, we will always assume that M r 0, though possibly 
small, M--* 0. Therefore, we find it convenient to introduce the quantity 

/det"  y f c \  1/2 
~g = ~ -  ~--~) e x p ( - 2 ; t 0 )  (3.55) 

which we expect to become independent of to for f lf to --* oe. 
From the description of the various contributions given at the begin- 

ning of this section, it seems intuitively clear that the fluctuations about the 
combined object can be written as a product of the fluctuations about the 
kink and antikink. In fact, we have 

det" Ygc det' ygx det' y fa  {~+ + 2 f  )z 
det Yr - det ~ f ~  det 3 f  \ 2 ~  + 2~-J (3.56) 

where the fluctuation spectrum should be calculated for zero boundary 
conditions 24 and where the additional factor corrects for the fact that in the 

24 The ratio of the fluctuation spectra depends on the boundary condition whenever the 
fluctuation operators in numerator and demoninator differ near the boundary. For instance, 
~k and Yr are different at the boundary to the right of tk. 
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above decomposition, integration over intermediate coordinate and 
velocity has to be included. 

3.9. The Decay Rate 

From Eqs. (3.44), (3.51), and (3.55), we obtain 

where 

27r @' e ~ dtk Jo dto e -  ~v(~,,) (3.57) 

~/V(to) ~--/~; t 0 - ~r  (3.58) 

The important point is that W(to) includes the long-ranged (fluctuation- 
induced) term 2 [ t o  which suppress sizable contributions from large to in 
the integral above. Therefore, it seems that the short range part ~r plays 
a crucial role in the present problem. Unfortunately, Nint is smallest for 
to=0, where the concept of a combined object, consisting of kink and 
antikink, breaks down. 

This problem has already been discussed for the white noise decay 
problem in ref. 14. As a remedy, 25 it has been proposed there to shift the 
path of the to integration from Im to=0  to Imto =i~/2~. Then, it is 
possible to extend the limits of the to integration to Re to= +oo. As a 
result, we obtain 

P1 = - F { ;  P( t )  = e r,  (3.59) 

and we recognize that the decay rate F is of the standard form (1.10). 
Specifically 

a = ( O o ~ o p ~ / ~ ) / ( g ~ ? ~  ~) 
(3.60) 

b = ~ , ~  

where we have multiplied the prefactor by the factor co2/7 in order to 
return to ordinary units. 

25 In the context of quantum mechanics, a formally quite similar problem is discussed in 
ref. 25. There is proposed to change the sign of the "coupling constant" q/. Hence ~//~ - q /  
for the integration; and then - q / - - .  q/. One can see easily that this procedure leads to the 
same result as the shift of the integration contour. A completely different method has been 
developed by Weiss and Theisen. (26~ Again, the final result is the same. 
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4. THE P IECEWlSE PARABOLIC  POTENTIAL 

Eckern et  al.  

4.1. Se l f -Consis tent  Solut ion 

Consider the form (3.24) for the piecewise parabolic potential (ppp) 
and observe its derivatives 

q0'(x) = 1 - x sgn x 

qf'(x) = - s g n  x 

~o"(x) = -26 (x )  

(4.1) 

This means that the nonlinearity of the potential appears only at those 
times t~ where xt changes its sign; i.e., where x , ,=0 .  Therefore, we may 
solve the equation of motion (3.33) for the extremal path as follows. We 
assume that the times t~ are known; then we rewrite the equation of motion 
in a linear form and find its general solution. Eventually, we determine t~ 
from the condition of self-consistency xt~= 0. Clearly, this strategy works 
best if there are only few zeros of x,; consequently, we restrict our attention 
to the overdamped case M <  1/4, where one expects that the equation 
xt = 0 has only one solution for the kink and the antikink, and two solu- 
tions of the combined object 

For  later convenience, let us introduce the notation 

O p = q~"(x p) = - s g n  x~ 

which enters in the definition (3.49) of the operator h p. 

(4.2) 

4.2 The Ant ik ink  

We choose t a=0 ,  whence it follows that x~'<>0 for t ~ 0  and 
a O t - sgn t. Therefore, (0'(xT) = 1 + xTOT, and the equation for the antikink 

(3.34) assumes the form 

h~x~+ 1 = 0  (4.3) 

The bounded solution of the linear equation (4.3) is 

{1-.le~+' t < 0  (4.4) 
x~= _ +Be-X~t+B2e-;.2t, t > 0  

where 2 + is defined by Eq. (3.26) and where the coefficients B~ are such 
that x7 and ~,~ are continuous. In the limit M ~ 0  where Z + ~ 1 and 
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)q--+ 0% we confirm the ppp part of Eq. (3.35). Note that the self-con- 
sistency x~= o = 0 is guaranteed by the ansatz (4.4). 

Later, the antikink translational mode 

~'/l " a .  ~  - x , ,  4,; = (4.5) 

will be of importance. In the limit M-+0 ,  we find easily from Eq. (3.35) 
that ~ =  e -Itl. For easy reference we give the general expression in terms 
of the Fourier transform, where 

2M2~( io)  - 2~ ) 
~la" = (Mo) 2 q- io) + 1 )(MO) 2 --k io) - 1) (4.6) 

4.3. The Kink 

k k We choose t~=0  and obtain x, <>0 for t<>0. Therefore, O, = - s g n  t 
k k .  and q/(x,k)= 1 + x , O , ,  this allows us to write Eq. (3.33a) as follows: 

- -k  k h,~, = 0  (4.7) 

Comparing Eq. (4.7) with the time derivative (see footnote 22) of Eq. (4.3), 
we conclude that 

= c .  (4.8) 

and inserting this relation in Eq. (3.33b), we obtain 

f h , x ,  ~- 1 + C dt' R , t , ~  , .=O (4.9) 

The constant C can be determined as follows. We multiply Eq. (4.9) from 
the left by 0St  and integrate with respect to t. Taking into account that 
-k  a ~ dt ~, = 2, we arrive at h, ~ _ t = 0 and that a 

(; )' do) a 2 ~ 
C = ~ k = 2  ~ I~o,I Ko~ (4.10) 

For sake of completeness we have added the relation C = ~k, which follows 
from Eqs. (3.37) and (4.8). 

Specifically, in the white noise limit 0 >> 0e, we obtain 

C = ~ k = ~  1 1202 I--..  (WN) (4.11) 

On the other hand, we find for blue noise (0 ~ 0B) the result that Nk_+ 
for M--+ 0; and that Nk increases slowly with increasing M to the value 
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1.07re for M--* 1/4. For finite 0, we have calculated ~k by numerical 
integration. The result is shown in Fig. 8 (Section 4.5) for M = 1/9. 

It is important to note that the condition (4.10) for C guarantees (i) 
k = 0. This can be shown as follows. k is bounded and (ii) that x,= 0 that x, 

First we recall the definition (3.50) of the Green's function GP,,. For 
illustration, consider the limit M =  0, where 

G ~ , , = O ( t - t ' ) e x p ( - h f  +hf,) (M=O)  

hf = m '  of,  

If convenient, we also make use of the full Fourier transform 

(4.12) 

G p = f dt dt' picot- i c o ' t l ~ r p  
o)co ' ~ v t t '  (4.13) 

as well as the partial transforms GPo,,, and GPo~, (note that not all combina- 
tions exist; however, we will need only those that do exist). Then we may 
write the solution of Eq. (4.9) as follows: 

k . fdo) k 2 (4.14) 

In the white noise (WN) limit, we have C.K~o = 0 ~.20 = 2  and it 
follows that x,~ = x  , , "  �9 this result has already been noted in Eq. (3.36). 

For blue noise (BN) and in the limit M =  0 where C =  zr, we obtain 
from Eqs. (4.6), (4.12), and (4.14) as well as (3.35) [El(t)  and Ei(t) are 
standard exponential integrals (27)] 

x~ = sgn t [ (1+ ]t]) ePtlEl(lt]) + �89 )] 

q~ = roe-jtl (BN; M = 0) 
(4.15) 

x~= - s g n  t ( 1 - e  -I*l) 

(For the sake of quick reference, we have repeated some relations.) 
Schematically, these types of kink and antikink are shown in the left and 
right parts of Fig. 7, respectively. In contrast to the white noise limit, where 

k=  x~_,, the kink shows a kind of overshooting. It appears that the par- X t  

ticle first moves in the "wrong" direction "to gain speed" for climbing up 
the barrier. From a formal point of view, this behavior is due to the long- 
time correlation (1.6) of the stochastic force. Explicitly, it follows from 
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k ++_(l+2/t2) f o r t - . O a n d t - .  +o% Eq. (4.15) that x, k ~ - 2 t  In Itl and x, ~ 
respectively; the latter relation confirms a previous statement on the slow 
algebraic asymptotics. 

Of importance will be the velocity vp=2P,=o , From Eqs. (4.5) and 
(4.14), we obtain 

(4.16a) 

v~ = ; . f  + 2~ M ~  2 + i ' o -  1 

where @~'o and C are given by Eqs. (4.6) and (4.10). In particular, we have 
for M--*0 

(1 <WN) 
v k = l ( 2  in 1 )  ~ (BN) (4.16b) 

4.4. The Combined Object  

Let tk and ta be the positions of kink and antikink (see Fig. 7); then 
sgnx~'= _+1 for ( t - t j ( t - G ) < > l .  Following Eq.(4.2), we define the 
quantity 

O;'(tk, ta) = ~p"(x~) = s g n [ ( t -  t~)(t - G)] (4.17a) 

and include it in the definition (3.49) of the operator h~. 
For convenience, we will work in this section with the symmetric 

choice tk = - t o / 2 ,  G = +to/2. Then (we obtain the general expression if we 
substitute t ~ t -  (t~ + G)/2, to ~ ta - -  tk in the symmetrized form) 

O; = sgn(t 2 - t2/4) (4.17b) 

With this choice, we have h~' = h ~ r  
According to the program outlined in Section 3.6, we add a source 

term to the action and replace ~[x~,  y , ]  by C~[x,, y~] as shown in 
Eq. (3.42). As a consequence, Eq. (3.33a) defining the extremal path ~b~ is 
replaced by 

--C c h,~, = -b (4.18) 

We introduce now the Green's function G~,,, according to Eq. (3.50). In 
-c _ ~. Thus, the solution view of the symmetry h ) = h  ,, we have G , , - G _ , ,  ~,. 

of Eq. (4.18) can be written as 

(U, = -G~_ , , j=o  . b (4.19) 
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Inserting this relation in Eq. (3.33b) 

g* 

c c | ! ~ c h t x t + l +  j dt K.,~bc=O (4.20) 

we find that its solution is given by 

c= .Ko~G . . . .  , = o -  x, G,C~o [b - c 2~6(~)] (4.21) 

It requires some calculation to show that for any Ko~ = K_w, the self- 
c c - 0  are satisfied simultaneously if we consistency conditions X,o/2 = X_,o /2-  

choose b = b(to) properly. Specifically, we have for blue noise and for large 
damping 

b = - �89 ,0; to >> 1 (0 = M = 0) (4.22) 

Concerning some details, note that in the limit of large damping, 

1 f l +  2e (~ + t ~ 1 7 6  - 1 ), t < - to~2 

- ~ b ~  = t ? 1  +2e  -~' t~ Itl < to /2  (M=O)  (4.23) 

t > to~2 

Therefore, we have in leading order 

e k c = 
X t  = X t + t o / 2 ;  O t  

c a c x , - x , _ , o / 2 ;  G = O ( e  -'~ 

(t + to/2 ) ~ 0 
(M = 0) (4.24) 

(t - to/2) "-~ 0 

k k a where x,,  ~b t, and x t are given in (4.15). For arbitrary damping M # 0, the 
above relation can easily be generalized; for later reference, we need the 
following relations: 

c k k a 

= ~  ~ O+to/21 + ~b~ = ~b~+t0/2 (t to/2)"- 0 

~b~,o/2 = 2~-~) k (4.25) 

22 ~ e&+,o c 

G to~2 ' _ to~2 - -  g 

where g has been introduced in Eq. (3.45). 
Concerning the action c~ as defined by Eq. (3.43), we should observe 

that the applied force shifts the trivial path according to 

x~ = - 1  -b--K~o=o (4.26) 
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Correspondingly, there is an "infinite" change of the action oc b 2, which we 
subtract. 

For the sake of simplicitly, let us discuss the details in the case 
M = 0 = 0, where Eq. (4.22) is valid. Eliminating to, we obtain 

~C(b) = ,  + 2b ( l n - - - ~  + 1) (4.27a) 

Performing the Legendre transform according to Eq. (3.44), we arrive at 

r = ~k(1 - e -'~ (4.27b) 

where presently N~=)z. 
For arbitrary M, one finds the result already given by Eq. (3.45). Note 

that the kink-antikink interaction depends on the color of the noise only 
through ~k. 

4.5. Fluctuation Determinant of the Combined Object 

Ignoring for a moment the existence of the zero and close-to-zero 
eigenvalues associated with the translational and breather modes, we may 
write 

(det gfc) 1/2 = const, f d[( , ,  r/,] exp - 5~ r/,] (4.28) 

where the operator .;f~' and the associated quadratic form ~ are defined 
by Eqs. (3.48) and (3.47). Consider now the quantity q~;-(p'"(x~) which 
appears in the definition of j fc .  Assuming that the kink and antikink are 
located at tk and ta, respectively, and considering Eq. (4.1), we obtain 

~ ; .  <0"'(x<;) = - Y, w p ~ ( t -  t . )  
p=~.a (4.29) 

wp = 2~',~/Iv.I 

where the velocities Vp are given by Eq. (4.16). 
The contributions of the translational and breather modes can be 

eliminated elegantly as follows (see ref. 28; also see ref. 29, Appendix B). 
Let us recall first that the probability of the event under consideration is 
originally given by the path integral (3.14b). Now, we choose for each con- 
figuration (x,, Yt = i~b,) of the integration field an extremal path ( X ) l , ~ ~ ) in 
the form of a combined object (with xtk = x,o--0) such that their distance 
@(x,, 0,1#,', ~') is as small as possible. Though there exists a standard 
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expression for this distance it is by no means compulsatory. We take 
advantage of this freedom 26 and choose 

~(xt ,  ~,1 x;, (~7)=fdt[x,-O;(t~, t~)] ~ (4.30) 

where O~= ~0"(x)) is given by Eq. (4.17a). 
Observe now that 

d 

dtk 
- -  O;'(t~, to) = 26( t  - t~) sgn(t a - tk) 

(4.31) 

and that there is a similar relation with tk and ta interchanged. We 
recognize clearly that N is minimal if x t~=x,o=0.  Arguing now in a 
standard way, (28'29) we conclude that 

fl k fl , ( d e t _~  _ ) ~ / e 
2n \de t"  9f~J = v ~ v ~  (4.32) 

where 

= N - 1  f d[( , ,  ~/,] '~((,k) '5(~,.) exp - s r/,] 

N =  f dE(,, t/t] exp - s [~t, r/z] 

(4.33) 

Note that above we replaced 2,, by "x~=Vp.  
The advantage of the choice ( 4 0 )  .3 is that it produces the two 

g-functions in Eq. (4.33), which allows us to discard the contribution 

I C C o dt (,~tq)2 " ' (x , )  = - ~  Wp(,  2 (4.34) 
P 

[see Eq. (4.29)] to ~ [ ~ , ,  q,]. 
Let us represent the &functions in Eq. (4.33) by two Fourier integrals 

with respect to p = (p~, Pa). Then 

d 2 p  1 
N = J (~n)2 e x p -  ~ PJgP (4.35) 

26 The only condition is that the prescription fixes the zero-frequency modes. This is 
guaranteed with the present choice, since S dt O~Jc~ # 0 for p = k, a, c. 
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where the matrix JA e is defined by 

l 
e x p - ~  pJC/p = N -I fd[(, ,  t/, ] e x p - c ~ c [ ( ,  rl, ] 

(4.36) 

Since ~ "  depends on (, only linearly, the [~,] integration 27 produces 
the 6-functional 

6 Ih~tqt + i ~ pp~(t- tp) ] 
p 

This means that only the paths 

(4.37a) 

q,= - i ~ p p # f  
P (4.37b) 

#f -c 
= G t t  p 

contribute to the [~/t] integration. 
Note that the Jacobian d[-h~q,]/dDl,] = 1 by the same arguments as 

given in Section 3.2. Therefore, 

C dt dt' p ~  p, 
Jgpp, = | #, K,,, # r 

J 
(4.38) 

Performing the p integration (see footnote 27) in Eq. (4.35), we arrive at 

l 
= ~ Fdet d{[ -1/2 (4.39a) 

One can show that 

det I ~ / -  (Wo1 w0s = 0 (4.40) 

which is a consequence of the translational zero-frequency mode. Hence, 

N=(1/27r)jdg~a/W~,+d/lkk/Wa__(WkWa)-ll 1/2 (4.39b) 

27 It is always understood that we have to choose integration contours properly in the 
complex plane in order to ensure convergence. 

822/59/3-4-25 
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For the evaluation of the above expression, we return to the sym- 
metric configuration tk= - t o / 2 ,  ta = +to/2. For a general orientation, let 
us also consider the limit M = 0. Since we are interested in large separation 
to > 1, we note that in order of magnitude 

k a 
[~-to/2, #to~2, W k  1 , ~ k k  ~" 1 

1~-,o/2, w ~ 1 , J//ak ~ e '~ (4.41) 

J~aa ~ e2t0 

We conclude that only the term Jg~a/Wk contributes in Eq. (4.39b). 
According to Eq. (4.25) and (4.29), we have 

wk = 2 ~ k 2 ~  /Vk (4.42a) 

Also, we recognize that #7 as defined by Eq. (4.37b) is of importance only 
in the region t , , , - t o / 2 ,  i.e., in the region of the kink. There, we have 
h~,+,0/2~#7=0; and considering Eqs. (4.7), (4.8), and (4.25), we conclude 
that 

#7 = DO~-(,+ 'o/2) 

1 -c 1 x+, (4.42b) 
D = 27  G _ ,o/2,,o/2 = g- e 2 o 

Consulting now Eq. (4.10), we find 

dgaa = - - 2 D 2 / ~  t' (4.42c) 

whence we obtain 

g ( ~ f f ) l / 2 ~ k . e  ;[t~ (4.43) 

This result allows us to express the prefactor a of Eq. (3.60) by known 
quantities. Considering the definition (3.55) of 0y and comparing it with 
Eq. (4.32), we conclude that 

(D o 
a = - -  ( I ) k ' l ) a )  1/2 (4.44) 

7 

Note that the color of the noise enters only indirectly through its influence 
on the kink velocity vk. In the white noise limit, this result coincides 
with Kramers' expression (2.8), since, there, v k = G = 2 f ,  and COo2~-/7= 
a(Kramers). 
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In conclusion, for a piecewise parabolic potential (ppp) and for 
arbitrary color of the noise, we have calculated the decay rate in the form 
shown in Eq. (1.10) by an asymptotic expansion. We have found that the 
exponent b = ~//~k, where ~// and ~k  are given by Eqs. (3.28) and (4.10), 
and that the prefactor a = (COo/7)(vkva) 1/2 depends only on the velocities vk 
and v~ of the kink and antikink as given by Eq. (4.16). Recall that the 
asymptotic expansion is valid under the condition shown in Eq. (1.13); in 
the present case one may convince oneself by explicit calculation that this 
condition means a large exponent b ~> 1. In Fig. 8, we show a and b as a 
function of temperature for M = co2/72 = 1/9. Furthermore, the decay rate 
as found by the present analytical calculation is compared with the results 
of the numerical simulation in Fig. 6 as a function of y/co 0 = M - 1/2 in the 
blue noise (BN) limit. Clearly, the agreement is very good if the exponent 
b is sufficiently large. 

4.6, Lorentz ian Noise 

For the sake of completeness, we demonstrate how to reproduce the 
results of Luciana and Varga (16) for the Lorentzian noise (LN) source of 
Eq. (1.15). In terms of the reduced variables of Section 3.4, we have 

_K~ = 20/(1 + co2r 2) (LN) (4.45) 

Fig. 8. 

p i 

31 ~ M=V9 . 

0 a 10-2 i0-I 10 0 101 0 
Temperature dependence of the prefactor a and the exponent b/ql =~k for the 

piecewise parabolic potential (ppp) and for ~ = 3co0 (M = 1/9). 
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For simplicitly, we consider the overdamped limit M =  0, where Eq. (4.6) 
reduces to ~t~o=2/(1+~2). Inserting these relations in Eq.(4.10), we 
obtain 

~k _ 1 (1 + ~)2 (LN) (4.46) 
0 1+2~ 

In order to obtain the prefactor from Eq. (4.44), we calculate the 
velocities according to Eq. (4.16a) and find that 

1 
va = -1 ,  vk - (LN) (4.47) 

1 + 2 z  

Returning now to ordinary units, we have for the exponent b and for the 
prefactor a 

v~ (1 + ~0~/~) 2 
b =  T 1 +2~o2z/7 (LN) 

(4.48) 
~o o 1 

a ~  
(1 + 2O~o~/oi) 1/~ 

This agrees with the results of ref. 16 if the parameters of the ppp are 
chosen to be the same. 

5. T H E  C U B I C  P O T E N T I A L  

5.1. C o r r e c t i o n s  t o  t h e  W h i t e  N o i s e  L i m i t  

For the cubic potential (cp) of Eq. (3.23), we have 

~o'(x) = 1(1 - x 2) 

~o"(x) = - x  

~o"(x) = - 1  

(5.1) 

This nonlinearity allows analytical calculations only in the overdamped 
limit M =  0 and the white noise (WN) limit. There, we have, according to 
Eqs. (3.35), (3.36), and (3.38), 

k x t = x~_~ = tanh t/2 
1 1 ~ k  _ _ - -  a t/2; ~b t = 0 (5.2) 20 c o s h  2 

2 

3O 
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The correction to the action can be calculated to lowest order by 
perturbation theory which is based on the stationarity of the extremal 
paths. Accordingly, this correction is equal to the expectation value of the 
perturbation zlN[xt, Yt]  in the action functional taken with respect to the 
unperturbed paths. In view of the action functional (3.29), we conclude 
that for yt k = i~t k 

'f 
= (p,AKt,,(~ c (5.3a) A ~ k  - - 2  dt dt '  k ~ k 

where the zeroth-order path is given by Eq. (5.2) and where 

fD 2 

(5.3bt 

This means that 

1 
A~k - 120 f dt(~)z (5.3c) 

and consequently 

~k = 2 (1 -- 60--~) (WN, M = 0 )  (5.4) 

One should compare this result with the corresponding expression (4.11) 
for the ppp. 

5.2. The Prefactor  in the W h i t e  Noise Limit 

An exppression for the kink-antikink interaction can be obtained by 
evaluating the action functional N(x,, y t = i O t )  for a combined object 
(x~, ~b~) as given by (3,40). Since 

=~[x, ,J +~[x~_,o] +R, 
(5.5) 

R t =  - - ( 1  - -  X~t__ tk)( l - -  Xt__la ) 

and since ~[x]] = O, we conclude that in perturbation theory 

Mint(to) = ~ [ x ~ ,  ir - ~ k  = f art R , q ~  (5.6) 

Inserting the expressions (5.2), we obtain in lowest order 

~ t ~ i n t ( t o )  = _ g N k  e to, g = 6 (5.7) 
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In the present case, the ansatz (3.40) works well, since the asymptotics of 
kink and antikink is of the exponential type. One can also show that 
corrections to this ansatz contribute to ~int by a term of second order 
OC e - 2t~ 

In the white noise limit, the Gaussian fluctuations about the combined 
object can be obtained conveniently from Eq. (3.56). Since the contribu- 
tions of kink and antikink are essentially the same (by some kind of time- 
reversal symmetry), we have 28 

1 { d e t " ~ )  1/2 1 d e t ' ~  a 
]?kl?a \de t  ~ -  ) - / ~  det J/~m e'~ (5.8) 

This can be understood as follows. First, we note that 

det ( A BD)=det(AD- BC) (5.9) 

if any of the submatrices is proportional to the unit matrix. Therefore, 

det, j 4 O P = l i m l d e t (  -~btp+e hip ) 
~ o e h p 20 + e 

l imldet[--P P-200f+20e(1-~-~ ")1 (5.10) = hth, ~t 
~ 0  8 

where K~t' = 206(t- t') has been inserted in ~ P  of Eq. (3.48). Taking into 
account the properties of the extremal path [see Eq. (5.2)], we find that 

-p P+20~bP -a a. (5.11) hth ~ =htht, p=k, a 
Using the fact that -a " ' " -  h~h,x,-0, we determine the e contribution to the 
determinant by perturbation theory. T h u s ,  29 

det' Jf~ = 20 det'/i"h ~ 
(5.12) t ~  

det' ffgk = 20 ~ det' [tah a 

which proves Eq. (5.8). At this point, we observe that 

h,h,-a o = w " ( x T ) 3  

(5.13) 
1 x2)2 W ( x )  = ( 1  - 

28 The add i t i ona l  factor  is 1 for M = 0. In  addi t ion ,  we have  to supply  a factor  e t0 which 

compensa te s  the d i scont inu i ty  of M ---, 0 and  M = 0. 
29 No te  tha t  for the no rma l i za t i on  (3.39), we have  to compa re  express ions  of the type 

4 ~ dx sinh 2 x / cosh  6 x = ~ dx(1/cosh 6 x). 
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and that the fluctuations about the instantons of the double-well potential 
W(x) have been done "doubly well" in ref. 24. Accordingly, 

det'/~ah~ 1 

det t~-h- 12 
(5.14) 

and we obtain from Eqs. (3.38), (3.39), (3.55), (5.8), and (5.14) 

f l k f lo~=~0  (5.15) 

Using Eqs. (3.60), (5.4), and (5.7), we find for the prefactor 

(D O 

7 
(5.16) 

which agrees with Eq. (2.8) in the overdamped limit M =  0. 

5.3. Numerical  Calculat ions of the Act ion 

The equations (3.33) for extremal paths can be combined in the form 

[MO~-~?,+q/'(xk,)] f dt' N,c[M2~,+ 2~,+qo'(xf)]=O (5.17) 

where we have noted explicitly our interest in the kink. 
In order to cast Eq. (5.17) in a manageable form, we have to assume 

k -2~, /wt  and strong damping, M =  0. For convenience, we introduce x t = 
obtain 

�9 k "" 1 x,  + ~o'(x~) = - 2  w, + -  
w, 2 

(5.!8) 

_ a , + ~ o , , ( x k ) =  - w  2 ~ 1 
' 0 t  w ,  ~ 

where we have made use of Eq. (5.1). Then, Eq. (5.17) can be integrated 
once and we find 

1 1 f 
= K t c  w ~, _iO,+2w ' 5Dw, dt , ~  2 ( M = 0 )  (5.19) 

where the integration constant D can be chosen at convenience. Note also 
that the action of Eq. (3.30) can be written as 

d k  ~'~'= 21 f = w t K t t ,  w t, -_D 2 dtdt' 2~ 2 (5.20) 
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For orientation, we consider the white noise limit where K . , =  
206(t-  t'). Choosing D = 1/20, we obtain 

1 3 fi),- �88 + ~wt = 0  (WN, M = 0 )  (5.21) 

The solution to this equation is wt= (cosh t /2)- l ;  and we may confirm 
relation (5.2). 

For a numerical calculation, we have written Eq. (5.19) in terms of 
Fourier transforms. The iteration procedure was similar to the one 
proposed in ref. 30. We have also made use of the possibility to choose the 
integration constant to our convenience. The error of our results (e.g., 
discretization) is estimated to be less than 1%. 

In addition, the kink action can also be calculated on the basis of a 
variational principle. There, we define the functional 

( 41 )__1 D2 2 2 - 2  (5.22) w~ f dt dt' wtK,,w c 2[w,] = 2D f dt + 

and then we observe that 3S/6w, = 0 is equivalent to Eq. (5.19). In addi- 
tion, choosing D to take the value which maximizes 2~, we obtain 

[[. d t ( ~  + w~/4)] 2 (5.23) 
2-- 2 S,[w,] = 2 [. dt dt' w,K,,w,, 

Obviously, the expression above is invariant under w ~ c~w, where ~ is a 
constant. For 0 = 0  (BN), the denominator in Eq. (5.23) is invariant with 
respect to a change in time scale; therefore, the optimal scale can be chosen 
easily. In this final form, the dependence on the form of w, is weak. For 
instance, if we take the form wt = (cosh t/2)- 1, we obtain a value for ~ 
which is only 3 % larger than the one obtained by iteration. 

The numerical results are summarized in Table I. For blue noise, we 
have 3N'k=4.18, which leads, for large damping ?l>>e) o ( M ~ 0 ) ,  to the 
expression for b = q/Mk as given in Eq. (2.9). 

In Fig. 5 we have compared the logarithmic decay rate a = ln(co0/2nF) 
as obtained from the numerical simulations (cp) with the present calcula- 
tion. As we have not succeeded in calculating the prefactor a for blue noise 
(BN), we have taken a =  1. The agreement is reasonable and we may 
attribute the difference to the prefactor. 

Table I. Temperature Dependence of the Exponent 3b/2~#=3~k/2 
for the Cubic Potential and for M - - 0  

0 10 4 10-3 10 2 10 I 100 101 

3~k 4.18 4.17 4.16 3.93 0.984 0.0996 
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6. QUANTUM THEORY OF THERMAL ACTIVATION 

In this section we discuss some of the consequences which follow from 
the full quantum mechanical action ~oM[X, Yt] shown in Eq. (3.17). 
In terms of the reduced variables introduced in Section 3.4, we have 
~QM[X, y,] --* ~ ' ~ M [ X * ,  y*],  where for the cubic potential (cp) (omit- 
ting henceforth asterisks again) 

~QM[X, y,] =-~'[X, y,] + 3~QM[Xt, y~] 
(6.1) .1  r 1 ( .  

A,.@QM [-Xt, = iOt] = --t-~ j dt y~ = --2-4 J dt ~ Y, 

and where N[x~, Yt] is given by Eq. (3.16) with ~, = M2, + 2~ + q/(xA. 
Again, we will evaluate path integrals of the type (3.15b) with the 

integrand QQM =exp(--~'~QM) in the extremal path approximation. We 
have already anticipated the fact that for such paths, y~ is purely 
imaginary. 3~ Explicitly, the equation of motion for the extremal path is 
n o w  

(M0  - 0 ,  - x , )  4 ,  = 0 

(6.2) 
[M2t+ At+~(1-x2t) l+~q)~ + f dt' RtrOr=O 

We recognize immediately that there is an extremal path (x~, ~bT=0 ) 
representing an antikink which is the same as in the quasiclassical 
approximation. We may also convince ourselves that for 0 ~> 1, there is a 
kinklike path of the type (5.2) except for corrections of relative order 0-2 

In fact, it is even possible to find the explicit form of a kink in the 
strong damping limit M = 0  provided that 0>0B. Let us look for a 
solution of the form 

" = - / t / J ;  qkkt = cf t, x t 
(6.3) 

r =(cosh t+cos~) -~  d t  

First, we observe that 

1 3 
f2  ~?zf t 

sin r 

2n sinh cot 
�9 ( 6 . 4 )  

f~ - sin z sinh e)n 

(f~)~ = (co coth cot - c o t h  r)f~/sin 

30 Indeed, this fact forces us to discard the piecewise parabolic potential (ppp) and to work 
with the cubic potential (cp) in spite of the difficulty of obtaining analytical solutions for 
the extremal paths. 
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Inserting the above relations in Eq. (6.2), we find that for M = 0, the equa- 
tion of motion is satisfied if ~ = 1/20 and c = - 2  sin ~. Hence 

sin 
{b, e = - 2  cosh t + cos z 

sinh t 
k _ (6.5) 

xt  c o s h  t + cos  r 

= 1/20; 0 > 08 = 1/2rt 

For 0 >> 1, this form of a quantum kink agrees in leading order with the 
quasiclassical approximation (5.2). Next we insert Eq. (6.5) in Eq. (6.1), 
whence we obtain the simple result for the action 

4 2 (6.6) 

Compare this expression with the high-temperature result (5.4) of the 
QCL where a correction term of order 0 -3 appears. In order to understand 
this difference, we calculate the difference ANQM by perturbation theory. 
Inserting the unperturbed paths of Eq. (5.2), we obtain 

1 ~ 1 1 
A ~ M  = - - ~  ~ | dt(~b'k)3 = 90 03 (6.7) 

which is exactly the difference between Eq. (6.6) and (5.4). 
A similar compensation occurs for all types of metastable potentials. 

Consider, for instance, the ppp, where in leading order 

i f  3 A~QM[Xt, Yt] = - - ~  dt 6(xt) yt 

1 (,~;)2 
A ~ M - -  12 03 

(6.8) 

which compensates the second-order term of the QCL expansion (4.11). 
We conclude: The decay rate of the QCL agrees with the result of the 

classical Langevin equation to leading order in the white noise limit 0 -~ ~ .  
However, the next order corrections to the exponent of the decay rate are 
an artefact of the quasiclassical approximation (1.7). 

Concerning the prefactor, we may form a combined object (x~', ~b~) as 
shown in Eq. (3.40) and calculate the kink-antikink interaction in the same 
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way as done in Section 5.2. Then we obtain a form as shown in Eq. (5.7), 
where, however, 

sin r 
gem = 6 - -  (6.9) "c 

Proceeding further, we decompose the fluctuation determinant of the com- 
bined object as in Section 5.2 and observe that the antikink contribution is 
the same. Eventually, we arrive at 

~~ 301/2 (det '  24~M~ 1/2 (6.10) 
~ =  7 gQM \ ~ j  

where the kink normalization is given by 

(fl~M)2 = ~  (1  r COS'~-- 1 (6.11) 
sin r / 

Furthermore, the fluctuation operator is given by 

1 p 
Yt~M = ~f~Pc + ~ fb l&( t -- t') ( O 0 01) (6.12) 

with the quasiclassical contribution as shown in Eq. (3.48). 
At this point, it is appropriate to recall some results of the standard 

quantum theory (31) as applied to thermal activation./32) There, one 
calculates the imaginary part of the free energy and one agrees that, for 
T >  T~, there is only a contribution from the trivial orbit 31 where the 
particle rests on the top of the barrier. This leads immediately to the same 
exponent ~ =  2/30, b = V~/kT as here. However, the Gaussian fluctua- 
tions about the trivial orbit can easily be evaluated. This leads to the 
prefactor 

+ oo 2 ~ Jr- (D 2 1/2 ~Oo v. + ; Iv~l ' 
atr = -  ~ (6.13) 

n ~ v ~ + ~ t v n l - o ~  

where v~ = 2rckTn/h. 
We have not been able to evaluate the fluctuation determinant in 

Eq. (6.10); therefore, a comparison with the expression (6.13) cannot be 
made. 

We have also been unable to solve the equation of motion (6.2) for 
T <  TB. In one attempt, we tried to find a kink solution numerically by 

3~ Since the free energy is calculated in imaginary (Euclidean) time, there is no obvious 
connection between the orbits there and in the present real-time theory. 
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methods similar to the one discussed in Section 5.3. For a control, we 
substituted A~QM ~ eA~)QM, where e was slowly increased in the course of 
iterations. However, an instability in the iteration at e ~ 0.9 prevented us 
from forming definite conclusions. 

7. Q U A N T U M  NOISE 

In their experiment Koch et al. ~5) were able to observe quantum noise 
of an Ohmic resistor at high frequencies ~o >> kT/h ,,~ 1011 Hz. According to 
their interpretation, the Josephson junction should be considered as a non- 
linear device which mixes the high-frequency noise down by the Josephson 
frequency 2eU/h to the low measurement frequency ~ 105 Hz. 

We recall that a Josephson junction shunted by an Ohmic resistor 
(resistively shunted junction, RSJ) corresponds to a Brownian quantum 
particle where the phase difference (in the range - ~ < ~ot < ~ ) has to be 
identified with the position x,. Further characteristic data are (see, e.g., 
ref. 33) 

m = (h/2e) 2 C; m 7 = (h/2e)2/R 

V ( x )  = - E j  c o s  x - Fx (7.1) 

Ej  = (h/2e) Is; F =  (h/2e) Ix  

In the relation above, C is the capacitance and I j  the critical current of the 
junction. Furthermore, R is the shunt resistor and Ix  an externally applied 
bias current. Note that the Josephson frequency (at I x  = 0) is given by 

~ = Es/m = 2elsC/h (7.2) 

In the scheme of reduced variables presented in Section 3.4, we leave 
the (presently) dimensionless coordinate xt = ~o, unchanged, but scale time 
and frequency as shown there. Furthermore, 

m 7 h 6.5ks (7.3) 
= h 4e2R R 

and we obtain from Eqs. (3.17) and (3.18) (asterisks omitted) 

~ j [ x ~ , y t ] = i  dt y , [ M 2 t + 2 , - F ] + 2 s i n ~ s i n x t  

+ ~ j dt dt y , K , , y c  (7.4) 
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In order to have a simple reference to the model, we have replaced (~J)QM 
by ~ .  

By the Josephson relation, 2eU= h(o; therefore, the voltage is propor- 
tional to the velocity 2 ,  Hence, the measured voltage noise has a power 
spectrum which is equal to the velocity-velocity correlation 

s,,, = ( ~ , % ) -  ( 2 , ) ( % )  (7.5) 

In a standard way, this correlation function can be computed by functional 
differentiation of the generating functional (see footnote 17) 

Z [ f t ]  : f d[xt, Yt] e x p -  ~ j [ x t ,  yf] +i f dtf ,2tt  

Thus, 

6 2 In Z [ f t ]  El,= (7.6) 
S , ,  - 3ft~J;' on 

Let us calculate Z asymptotically for q /ve ry  large. In a first step, we 
have to determine the extremal paths for [ f t  = 0]. Putting y, = i~b, these 
paths are determined by 

(M0~ - c~t) ~b t + 2 slnh ~- cos xt = 0 

f (M2, + 2, - F) + cosh ~- sin xt + dt' R.,(~t, = 0 
(7.7) 

For F >  Fc, there is a nontrivial path which is a solution of the deter- 
ministic equation of motion representing a free running (p = r) Josephson 
junction, where ~bT=0 and ( 2 7 ) # 0 .  Specifically, we have 

M2~ + 27 - F +  sin x7 = 0 (7.8) 

Expanding Ns quadratically about this path, we have, since ~ j  = 0, 

#r = 5~ r/,] (7.9) 

where d r is of the form (3.47) with Jgr as given (since ~b~ = 0) in (3.48). 
Note also that Eq. (3.49) remains meaningful, 

h r = M• 2 + c~ t + cos x~ (7.10) 

as well as the Green's function G~,,, which is found as a solution of 
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Eq. (3.50), and which is bounded in the present case. In addition, we also 
need the inverse of yfr, which can be written as follows: 

fr = (G0 G~,,)+ (~ O0) fdt~dt,lG,,~2,1qG,it" (7.11) 

Therefore, we conclude that within the present approximation, the 
generating functional is given by 

= exp - ~ �9 r " - 

where (f~r means the (c~, c() matrix element of f~,,. Clearly, we have 

~2 (~2 
S.,=OTg-F(~,,)~-& at, f dt~ dt'~ G.,R,~aG,.~,, (7.13) 

It is not difficult to convince oneself that the quasiclassical approxima- 
tion (1.7) which replaces the term 2 sin 1 5yt sinx,  in Eq. (7.4) by y, sin xt 
does not change the result (7.13). Therefore, we conclude that within the 
accuracy of the semiclassical approximation, the QCL does lead to the 
correct resuhfor quantum noise. In fact, the result (7.13) can be obtained 
from Eq. (1.1) for a potential V(x)= - E s c o s  x - F x  to lowest order in the 
noise source, as demonstrated explicitly in ref. 4 for a strongly damped 
Josephson junction (M = 0). 

As a side remark, we mention that a Gaussian noise in the bias current 
with correlation (6Ix(t)6Ix(t'))= (2e/h) 2 L,, contributes to the observed 
voltage noise S,,  such that K,, in Eq. (7.13) is replaced by K,, + L,, .  

8. CONCLUSIONS 

We have been motivated to undertake the investigations presented in 
this paper by questions concerning the quality of the quasiclassical 
approximation (1.7) which leads to the quasiclassical Langevin (QCL) 
equation (1.1). In ref. 6, it has been argued that for sufficiently large damp- 
ing (7 >> h/mx~) one may expect such an approximation to be reasonable. 

Concerning the decay of a metastable state, which we have studied 
here most extensively, this expectation is justified only within a very restric- 
ted interpretation. With increasing damping, the crossover temperature Te 
decreases, so that for a given temperature, the Brownian particle behaves 



Quasiclassical Langevin Equation 933 

more and more classically. On the other hand, we cannot help but admit 
our disappointment that the QCL produces corrections to the high-tem- 
perature limit which are spurious. At very low temperature, the QCL leads 
for the cp to an exponent b of the decay rate (1.10) which is of the same 
functional form as the one obtained from the instanton technique but 
which is smaller by about a factor 1/2. 32 

On the other hand, we have shown by an explicit calculation with a 
Josephson junction as a model that the QCL reproduces correctly the 
influence of quantum noise on a predominantly deterministic motion of the 
Brownian particle. 

From a formal point of view, the Langevin equation is an equation of 
motion for the position x ( t )  of the Brownian particle driven by a stochastic 
force ~(t). We have a strong increase of noise power with frequency (blue 
noise), which may be considered to be a consequence of zero-point fluctua- 
tions. In this case, it is necessary to retain the acceleration term 
m d2x( t ) /d t  2 in the Langevin equation. It is a remarkable feature that this 
acceleration term changes the Jacobian of the mapping ~(t)-- ,x( t)  in a 
drastic way independent of the smoothness or ruggedness of the stochastic 
process ~(t). Furthermore, this paper opens an interesting perspective, since 
it provides a bridge between the path integral description of Langevin pro- 
cesses with colored noise (2~ and the Keldysh technique (m~ for a real-time 
presentation of quantum processes. In particular, we propose to investigate 
more closely the consequences of this ansatz for quantum decay problems. 
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